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33Don't connect the reference beams to each other.  A foot 
up on one beam and both references are disturbed!



4See?
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Make sure the support stakes of the reference beams are far enough 
away from the support of the kentledge load and the latter far enough 
from the pile. The distances are prescribed in the ASTM Guidelines.



66Most piles are installed slightly inclined.  Consider this when arranging the 
reaction structure — and always use a swivel plate to avoid edge loading.
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Fellenius 1984
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A routine static loading test provides 
the load-movement of the pile head...

and the pile capacity?
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DECOURT 235
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T e l l t a l e s
• A telltale measures shortening of a pile and must never be arranged 

to measure movement.
• Let toe movement be the pile head movement minus the pile 

shortening.
• For  a single telltale, the shortening

 

divided by the distance 
between the pile head and the telltale toe is the average strain

 

over 
that length.

• For two telltales, the distance to use is that between the telltale tips.
• The strain

 

times the cross section area of the pile times the pile 
material  E-modulus is the average load

 

in the pile.

• To plot a load distribution, where should the load value be 
plotted?  Midway of the length or above or below?
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Load distribution for constant
 

unit shaft resistance
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Linearly increasing
 

unit shaft resistance 
and its load distribution
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• Today, telltales are not used for determining strain (load) in a pile 
because using strain gages is a more assured, more accurate, 
and cheaper means of instrumentation.

• However, it is good policy to include a toe-telltale to measure toe 
movement.  If arranged to measure shortening of the pile, it can also 
be used as an approximate back-up for the average load in the pile.

• The use of vibratory strain gages (sometimes, electrical resistance 
gages) is a well-established, accurate, and reliable means for 
determining loads imposed in the test pile.

• It is very unwise to cut corners by field-attaching single strain 
gages to the re-bar cage.  Always install factory assembled “sister 
bar” gages.
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Rebar Strain Meter Rebar Strain Meter ——
 

“Sister Bar”“Sister Bar”

Reinforcing Rebar

Rebar Strain Meter

Wire Tie

Instrument Cable

or Strand

Tied to Reinforcing Rebar

Hayes 2002

Three 
bars?!

Wire Tie

Tied to Reinforcing Rings

Reinforcing Rebar
or Strand

(2 places)

Rebar Strain Meter

Instrument Cables

(3 places, 120° apart)
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Example of Electromagnetic Interference (EMI) — noise — from a 
generator and power cable affecting vibrating wire strain gages

Osborne, N. and Tan, G.H., 2009. Factors influencing the performance of strain-gage instrumented 
Monitoring systems. Geotechnical News, (27)2 34-37. 

Sources of noise are for example arc welding, machinery ignition, power generators, and power cables, etc.

Continual noise will impart a general trend of overall accuracy of data by increasing its spread between data 
points.  Sudden noise, for example, when starting up a machine, the ignition may cause a spike in the 
readings. Electronic noise tends to result in a reduction in strain gage values, whereas magnetic noise 
increases the strain gage values.

Lunch                                                 Generator turned off
break

Night Night
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We have got the strain. 
How to we get the load?

• Load is stress times area

• Stress is Modulus (E) times strain

• The modulus is the key

εσ E=
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For a concrete pile or a concrete-filled bored pile, the modulus 
to use is the combined modulus of concrete, reinforcement , and 

steel casing

cs

ccss
comb AA

AEAE
E

+
+

=

Ecomb = combined modulus 
Es = modulus for steel
As = area of steel
Ec = modulus for concrete
Ac = area of concrete
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• The modulus of steel is 200 GPa (207 GPa for those weak at heart)

• The modulus of concrete is. . . . ?

Hard to answer.  There is a sort of relation to the cylinder strength and the 
modulus usually appears as a value around 30 GPa,  or perhaps 20 GPa 
or so, perhaps more. 

This is not good enough answer but being vague is not necessary.

The modulus can be determined from the strain measurements.

Calculate first the change of strain for a change of load
 

and plot the 
values against the strain.

Values are known
ε
σ
Δ
Δ

=tE
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ba
d
dEt +=⎟

⎠
⎞

⎜
⎝
⎛= ε

ε
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εεσ ba
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⎠
⎞

⎜
⎝
⎛= 2

2

εσ sE=

Which can be integrated to:

But stress is also a function of 
secant modulus and strain:

Combined, we get a useful relation:

baEs += ε5.0

In the stress range of the static loading test, modulus of concrete 
is not constant, but a more or less linear relation to the strain

and Q = A Es
 

ε
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Note, just because a strain-gage has registered some strain 
values during a test does not guarantee that the data are 
useful.   Strains unrelated to force can develop due to 
variations in the pile material and temperature and amount to 
as much as about 50± microstrain.  Therefore, the test must be 
designed to achieve strains due to imposed force of ideally 
about 500 microstrain and beyond.  If the imposed strains are 
smaller, the relative errors and imprecision will be large, and 
interpretation of the test data becomes uncertain, causing the 
investment in instrumentation to be less than meaningful.  The 
test should engage the pile material up to at least half the 
strength.  Preferably, aim for reaching close to the strength.

Moreover, each gage reading must be assessed as to it  being 
true to the actual strain and free from interference.
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Results of static loading tests on 40 m long, instrumented steel piles in a saprolite soil.
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The unit shaft resistance is calculated as the 
difference in evaluated loads for adjacent gage 
levels divided with shaft area (= distance 
between gage levels times pile circumference).

The load difference is about the same magnitude 
as the error in each load value!

Each gage reading provides a load value.  
The treatment of the values has to be with 
understanding of the accuracy/error of each.
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Could there be load in the pile before 
we start the loading test?

and, if so,

Could such load have any significant 
effect on the data evaluation?
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But,  is the “no-load” situation really the 
reading taken at the beginning of the test?  
What is the true “zero-reading” to use?

The strain-gage measurement is 
supposed to be the change of strain 
relative the “no-load” situation (i.e., 
when no external load acts at the gage 
location).

Determining load from strain-gage measurements in the pile
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• We often assume – somewhat optimistically or 
naively – that the reading before the start of the test 
represents the “no-load” condition.

• However, at the time of the start of the loading test, 
loads do exist in the pile and they are often large.

• For a grouted pipe pile or a concrete cylinder pile, 
these loads are to a part the effect of the temperature 
generated during the curing of the grout.

• Then, the re-consolidation (set-up) of the soil after the 
driving or construction of the pile will impose additional 
loads on the pile.
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What we measure is the increase of 

load in the pile due to the load 

applied to the pile head.  The 

external-origin load in the pile that 

was there before we started the test 

is called "Residual Load".
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B. Load and resistance in DA

for the ultimate load applied

Sand

Example from Gregersen et al., 1973
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Distribution of Measured Loads (“False Resistance”) 
and “True Resistance
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FHWA tests on 0.9 m diameter bored piles 
One in sand and one in clay 

(Baker et al., 1990 and Briaud et al., 2000)
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ANALYSIS RESULTS:  Load-transfer curves
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Results of analysis of a Monotube pile in sand 
(Fellenius et al., 2000)
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Method for evaluating 
the residual load distribution
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The approach can be applied also to 
dynamic tests
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Analysis Procedure
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Results
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Concrete hydration temperature
 

measured in a grouted 
concrete cylinder pile
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Photo of short (2 m) pieces with plastic tube enabling them to be  submerged
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Strain History During Curing of a 2 m Lab Specimen

Pusan Case
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The strain gages themselves ar
 

not are 
temperature sensitive, but the records may be!

The vibrating wire and the rebar have almost the same temperature 
coefficient.  However, the coefficients of steel and concrete are slightly 
different.  This will influence the strains during the cooling of the grout.  
More important, the rise of temperature in the grout could affect the 
zero reading of the wire and its strain calibration.  It is necessary to 
“heat-cycle” (anneal) the gage before calibration.  (A routine measure of 
Geokon, US manufacturer of vibrating wire gages).
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• Readings should be taken immediately before 
(and after) every event of the piling work and not 
just during the actual loading test

• The No-Load Readings will tell what happened 
to the gage before the start of the test and will 
be helpful in assessing the possibility of a shift 
in the reading value representing the no-load 
condition 

• If
 

the importance of the No-Load Readings is 
recognized,  and if

 
those readings are reviewed 

and evaluated, then, we are ready to consider 
the actual readings during the test
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Of course, 

we must consider also other aspects:
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Interpretation of a series of tests 
performed at different times
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Also the best field work can get messed up if the analysis and 

conclusion effort loses sight of the history of the data

The dynamic test (CAPWAP) was performed after the static test.

The redriving (ten blows) forced the pile down additionally about 45 mm.
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Often the past routines are nothing but jog 
trotting along with the humdrum  past.  For 
example, incorporating unloading/reloading 
cycles is useless and actually impairs a test.
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Result on a test on a 2.5 m diameter, 85.5 m long bored pile

Does unloading/reloading add anything of value to a test?
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Plotting the repeat test in proper sequence
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The above series of unloading/reloading has 
added nothing but cost the client a lot of money.
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Thank  you for 
your attention
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